Authentication and identification markers for medicinal plants: I Aristolochia bracteolata

Authors

DOI:

https://doi.org/10.18203/issn.2454-2156.IntJSciRep20214932

Keywords:

Aristolochia, Chloroplast genome, Markers, Barcode, Phylogeny

Abstract

Background: Aristolochiaceae is a unique plant family that contains aristolochic acids (AAs), with around 600 species.

Methods: The entire chloroplast genome of Aristolochia bracteolata was sequenced in this work, and fourteen chloroplast (cp) genomes were retrieved from the NCBI database.  

Results: We also analyzed six types of microsatellite markers among these species and found some different markers for each species. A molecular phylogeny based on 7 barcode regions i.e. matK, atpF to atpH, psbK to psbI, rbcL, rpoB, rpoC2 and rpoC1 is proposed for Aristolochia and 16 species from Piperales, Arabidopsis thaliana is taken as an outgroup. Phylogenetic relationships using concatenated protein-coding genes from Chloroplast genomes of Piperales using the maximum likelihood method is also discussed.

Conclusions: In the present study we are providing some unique markers and phylogenetic relationships among Piperales members which will help in identification, authentication, to prevent adulteration and further investigation of these medicinal plants.

Metrics

Metrics Loading ...

Author Biographies

Dharam B. Khandhar, Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India

Department of Biosciences

Pritesh P. Bhatt, Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India

Department of Biosciences

Vrinda S. Thaker, Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India

Department of Biosciences

References

Li X, Zuo Y, Zhu X, Liao S, Ma J. Complete chloroplast genomes and comparative analysis of sequences evolution among seven Aristolochia (Aristolochiaceae) medicinal species. Int J Mol Sci. 2019(5);20:1045.

Neinhuis C, Wanke S, Hilu K, Müller K, Borsch T. Phylogeny of Aristolochiaceae based on parsimony, likelihood, and Bayesian analyses of trn L-trn F sequences. Plant Syst Evol. 2005;250(1):7-26.

Silva-Brandão K, Solferini V, Trigo J. Chemical and phylogenetic relationships among Aristolochia L. (Aristolochiaceae) from southeastern Brazil. Biochem Syst Ecol. 2006;34(4):291-302.

Wu T, Damu A, Su C, Kuo P. Terpenoids of Aristolochia and their biological activities. Nat Prod Rep. 2004;21(5):594-624.

Das T, Latha R, Agastian P. Evaluation of Aristolochia bracteolata Linn. for antimicrobial activity, α-glucosidase inhibition, and its phytochemical constituents. Evaluation. 2016;9(1).

Gbadamosi I, Egunyomi A. In–Vitro Propagation and Antimycotic Potential of Extracts and Essential Oil of Roots of Aristolochia Bracteolata Linn.(Aristolochiaceae). Afr J Tradit Complement Altern Med. 2012;9(1):50-5.

Dechbumroong P, Aumnouypol S, Denduangboripant J, Sukrong S. DNA barcoding of Aristolochia plants and development of species-specific multiplex PCR to aid HPTLC in ascertainment of Aristolochia herbal materials. PloS One. 2018;13(8):e0202625.

Suliman Mohamed M, Timan Idriss M, Khedr I, Abd AlGadir H, Takeshita S, Shah M et al. Activity of Aristolochia bracteolata against Moraxella catarrhalis. Int J Bacteriol. 2014.

Sharma A, Namdeo A, Mahadik K. Molecular markers: New prospects in plant genome analysis. Pharmacogn Rev. 2008;2(3):23.

Hollingsworth P, Graham S, Little D. Choosing and using a plant DNA barcode. PloS one. 2011;6(5):e19254.

Ramundo S, Rochaix J. Controlling expression of genes in the unicellular alga Chlamydomonas reinhardtii with a vitamin-repressible riboswitch. Method Enzymol. 2015;550:267-81.

Wu M, Li Q, Xu J, Li X. Complete chloroplast genome of the medicinal plant Amomum compactum: gene organization, comparative analysis, and phylogenetic relationships within Zingiberales. Chin Med J. 2018;13(1):1-12.

Ganie S, Upadhyay P, Das S, Sharma M. Authentication of medicinal plants by DNA markers. Plant Gene. 2015;4:83-99.

Li Y, Korol A, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol. 2002;11(12):2453-65.

Zane L, Bargelloni L, Patarnello T. Strategies for microsatellite isolation: a review. Mol Ecol. 2002;11(1):1-16.

Mekvipad N, Satjarak A. Evolution of organellar genes of chlorophyte algae: Relevance to phylogenetic inference. PloS One. 2019;14(5):e0216608.

Ren X, Xin G, Jia G, Zhang X, Liu H, Yang C et al. Characterization of the complete chloroplast genome sequence of Tapiscia sinensis (Tapisciaceae). Conserv Genet Resour. 2018;10(4):765-68.

Somaratne Y, Guan D, Wang W, Zhao L, Xu S. The Complete chloroplast genomes of two Lespedeza species: insights into codon usage bias, rRNA editing sites, and phylogenetic relationships in Desmodieae (Fabaceae: Papilionoideae). Plants. 2020;9(1):51.

Huang Y, Wang J, Yang Y, Fan C, Chen J. Phylogenomic analysis and dynamic evolution of chloroplast genomes in Salicaceae. Front Plant Sci. 2017;8:1050.

Bhatt P, Thaker V. A comparative study on 193 plastomes of Poaceae for validity and implications of individual barcode genes and concatenated protein coding sequences with selected plastomes of grasses from the desert of India. Meta Gene. 2021;100921.

Liu C, Shi L, Zhu Y, Chen H, Zhang J, Lin X, Guan X. CpGAVAS, an integrated web server for the annotation, visualization, analysis, and GenBank submission of completely sequenced chloroplast genome sequences. BMC genomics. 2012;13(1):1-7.

Wyman S, Jansen R, Boore J. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004;20(17):3252-5.

Lowe T, Chan P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res. 2016;44(1):54-7.

Sablok G, Padma Raju G, Mudunuri S, Prabha R, Singh D, Baev V et al. ChloroMitoSSRDB 2.00: more genomes, more repeats, unifying SSRs search patterns and on-the-fly repeat detection. Database. 2015.

The Editorial Committee of Flora of China. Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA. 2003;5:246-69.

Murata J, Ohi T, Wu S, Darnaedi D, Sugawara T, Nakanishi T, Murata H. Molecular phylogeny of Aristolochia (Aristolochiaceae) inferred from matK sequences. Acta phytotaxonomica et geobotanica. 2001;52(1):75-83.

Ohi-Toma T, Sugawara T, Murata H, Wanke S, Neinhuis C, Murata J. Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on sequences of rbcL, matK, and phyA genes, with special reference to differentiation of chromosome numbers. Syst Bot. 2006;31(3):481-92.

Qian J, Song J, Gao H, Zhu Y, Xu J, Pang X, Yao H, Sun C, Li X, Li C, Liu J. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PloS One. 2013;8(2):e57607.

Jansen K, Cai Z, Raubeson A, Daniell H, Depamphilis W, Leebens-Mack J, Müller F, Guisinger-Bellian M, Haberle C, Hansen K, Chumley W. Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. PNAS. 2007;104(49):19369-74.

Moore J, Bell D, Soltis S, Soltis E. Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. PNAS. 2007;104(49):19363-8.

Lin X, Dong J, Yang Q, Zhou W, Wang Y, Zhang Y, Ahmad M, Sun Y, Wang Y, Ling J. Identification of three seagrass species in coral reef ecosystem by using multiple genes of DNA barcoding. Ecotoxicology. 2021;30(5):919-28.

Amandita F, Rembold K, Vornam B, Rahayu S, Siregar I, Kreft H, Finkeldey R. DNA barcoding of flowering plants in Sumatra, Indonesia. Ecol Evol. 2019;9(4):1858-68.

Murali S, Rashmi T, Francis M. Phylogenetic relationship of selected Aristolochia spp. with different generic segregates inferred using rbcL and matK genes. J Med Plants. 2016;4:99-103.

Hillis D, Bull J. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Bot. 1993;42(2):182-92.

Jiao Y, Jia M, Li W, Chai L, Jia J, Chen Z, Wang Y, Chai Y, van de Weg E, Gao S. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC genomics. 2012;13(1):1-16.

Xue J, Wang S, Zhou L. Polymorphic chloroplast microsatellite loci in Nelumbo (Nelumbonaceae). Am J Bot. 2012;99(6):240-4.

Gupta P, Varshney R. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica. 2000;113(3):163-85.

Kim K, Ratcliffe S, French B, Liu L, Sappington T. Utility of EST-derived SSRs as population genetics markers in a beetle. J Hered. 2008;99(2):112-24.

Liu S, Yin X, Lu J, Liu C, Bi C, Zhu H et al. The first genetic linkage map of Ricinus communis L. based on genome-SSR markers. Ind Crops Prod. 2016;89:103-8.

Li X, Zhang C, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe C, Li J. Zhong Y. Complete chloroplast genome sequence of holoparasite Cistanche deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host Haloxylon ammodendron (Chenopodiaceae). PloS One. 2013;8(3):e58747.

Downloads

Published

2021-12-24

Issue

Section

Original Research Articles